Search by Algolia
Add InstantSearch and Autocomplete to your search experience in just 5 minutes
product

Add InstantSearch and Autocomplete to your search experience in just 5 minutes

A good starting point for building a comprehensive search experience is a straightforward app template. When crafting your application’s ...

Imogen Lovera

Senior Product Manager

Best practices of conversion-focused ecommerce website design
e-commerce

Best practices of conversion-focused ecommerce website design

The inviting ecommerce website template that balances bright colors with plenty of white space. The stylized fonts for the headers ...

Catherine Dee

Search and Discovery writer

Ecommerce product listing pages: what they are and how to optimize them for maximum conversion
e-commerce

Ecommerce product listing pages: what they are and how to optimize them for maximum conversion

Imagine an online shopping experience designed to reflect your unique consumer needs and preferences — a digital world shaped completely around ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

DevBit Recap: Winter 2023 — Community
engineering

DevBit Recap: Winter 2023 — Community

Winter is here for those in the northern hemisphere, with thoughts drifting toward cozy blankets and mulled wine. But before ...

Chuck Meyer

Sr. Developer Relations Engineer

How to create the highest-converting product detail pages (PDPs)
e-commerce

How to create the highest-converting product detail pages (PDPs)

What if there were a way to persuade shoppers who find your ecommerce site, ultimately making it to a product ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

Highlights from GopherCon Australia 2023
engineering

Highlights from GopherCon Australia 2023

This year a bunch of our engineers from our Sydney office attended GopherCon AU at University of Technology, Sydney, in ...

David Howden
James Kozianski

David Howden &

James Kozianski

Enhancing customer engagement: The role of conversational commerce
e-commerce

Enhancing customer engagement: The role of conversational commerce

Second only to personalization, conversational commerce has been a hot topic of conversation (pun intended) amongst retailers for the better ...

Michael Klein

Principal, Klein4Retail

Craft a unique discovery experience with AI-powered recommendations
product

Craft a unique discovery experience with AI-powered recommendations

Algolia’s Recommend complements site search and discovery. As customers browse or search your site, dynamic recommendations encourage customers to ...

Maria Lungu

Frontend Engineer

What are product detail pages and why are they critical for ecommerce success?
e-commerce

What are product detail pages and why are they critical for ecommerce success?

Winter is coming, along with a bunch of houseguests. You want to replace your battered old sofa — after all,  the ...

Catherine Dee

Search and Discovery writer

Why weights are often counterproductive in ranking
engineering

Why weights are often counterproductive in ranking

Search is a very complex problem Search is a complex problem that is hard to customize to a particular use ...

Julien Lemoine

Co-founder & former CTO at Algolia

How to increase your ecommerce conversion rate in 2024
e-commerce

How to increase your ecommerce conversion rate in 2024

2%. That’s the average conversion rate for an online store. Unless you’re performing at Amazon’s promoted products ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

How does a vector database work? A quick tutorial
ai

How does a vector database work? A quick tutorial

What’s a vector database? And how different is it than a regular-old traditional relational database? If you’re ...

Catherine Dee

Search and Discovery writer

Removing outliers for A/B search tests
engineering

Removing outliers for A/B search tests

How do you measure the success of a new feature? How do you test the impact? There are different ways ...

Christopher Hawke

Senior Software Engineer

Easily integrate Algolia into native apps with FlutterFlow
engineering

Easily integrate Algolia into native apps with FlutterFlow

Algolia's advanced search capabilities pair seamlessly with iOS or Android Apps when using FlutterFlow. App development and search design ...

Chuck Meyer

Sr. Developer Relations Engineer

Algolia's search propels 1,000s of retailers to Black Friday success
e-commerce

Algolia's search propels 1,000s of retailers to Black Friday success

In the midst of the Black Friday shopping frenzy, Algolia soared to new heights, setting new records and delivering an ...

Bernadette Nixon

Chief Executive Officer and Board Member at Algolia

Generative AI’s impact on the ecommerce industry
ai

Generative AI’s impact on the ecommerce industry

When was your last online shopping trip, and how did it go? For consumers, it’s becoming arguably tougher to ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

What’s the average ecommerce conversion rate and how does yours compare?
e-commerce

What’s the average ecommerce conversion rate and how does yours compare?

Have you put your blood, sweat, and tears into perfecting your online store, only to see your conversion rates stuck ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

What are AI chatbots, how do they work, and how have they impacted ecommerce?
ai

What are AI chatbots, how do they work, and how have they impacted ecommerce?

“Hello, how can I help you today?”  This has to be the most tired, but nevertheless tried-and-true ...

Catherine Dee

Search and Discovery writer

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

When designing the best-in-class shopping experience on an ecommerce platform, we have to take into consideration the user experience at every touch point. We’ve identified two foundational types of behavior as users discover products on an ecommerce site or app:

  1. Searching: discovery by entering a query in the search bar on the page
  2. Browsing: discovery pattern which includes any other activity beyond search, such as navigating to different category pages, clicking on the banners, filtering and sorting the results on the product listing pages, and more

Undoubtedly, Search plays a central role in the end-user experience on an ecommerce website. The impact of effective search solutions on key merchandising performance metrics cannot be underestimated. There are multiple ways in which a Search and Discovery experience on your platform can be enhanced and optimized for various ecommerce user-journey scenarios: 

  • Adding suggested searches to offer users to choose from the most popular search queries.
  • Applying Personalization to ensure that users will always be presented with the most relevant results for their unique preferences.
  • Activating AI Synonyms Suggestions to let your users use different words to search for the same products.
  • Adding recommendations at every touch point in the customer journey. Search and Recommendations are complementary products. When used together, they are able to provide the best-in-class Discovery experience to the ecommerce platforms users.

Combining Search and Recommendation engine capabilities

In the example below, sporting goods fashion retailer Gymshark is boosting its revenue using Algolia Recommend API powered by machine learning in addition to powering Gymshark’s site with Algolia Search:

Gymshark’s success metrics:

  • 150% increase in order rate and 32% “add to cart” rate with new users on Black Friday
  • 13% higher order rate and 10% higher “add to cart” rate from returning customers
  • 1.4 clicks per user vs. 1.1 with previous solution

To learn how leading ecommerce retailers leverage the AI-powered Recommendations engine’s capabilities to crash their digital merchandising goal: Gymshark adds Algolia Recommend to handle crucial Black Friday period.

Leveraging recommendations at different touch points

Recommendations are the smart way to leverage AI capabilities to increase discoverability, upsell related or frequently bought together products, and increase average order volume and boost revenues.

There are multiple ways to use recommendations on category pages and beyond:

  • Home page. When users land on the home page, they are presented with a dynamic product carousel featuring recommended products, that will adapt the recommendations to the user.
  • Category listing page or product listing page. Recommendations can be featured on the category pages to increase average order value and items amount per order.

For example, on a category page featuring running shoes, users can see recommendations for products that are frequently bought together with running shoes, such as socks.

  • Product description page. Once the user lands on a product description page, they might be interested in being offered similar products or frequently bought together products.

For example, a user clicked on a light blue color t-shirt. They are not sure this product completely matches their style. They notice a similar blur t-shirt under the “similar product” gallery that is exactly what they are looking for and add it to their cart. Additionally, they see a short under the “frequently bought together” gallery that is part of a matching set with their t-shirt, and decide to add this product to their cart, as well.

 

 

  • Add to cart page. Once the user adds a product to their cart, an opportunity for upsell opens up. AI-generated recommendations can help you offer the right products to match the items your user has already shown intent to purchase.
  • Check out page. A checkout page is an additional opportunity to upsell similar or related products using the AI Recommendation engine

For example, a user has added a jean and a blouse to the cart and are now ready to check out. Your store offers free shipping for orders over $99, but this customer’s order falls short of the free shipping minimum. This is an opportunity to suggest additional products, such as matching belts, socks, or hats. This is a win-win situation for the company, gaining more revenue and order volume, and for the customer, receiving a discount in the form of free shipping.

  • Email recommendations. Sometimes users abandon virtual carts, show interest in products that are not yet available or temporarily out of stock, or just click on items without proceeding to make a purchase. You are able to re-introduce or remind them about the items that caught their attention by sending them an email recommendation for relevant products using the AI Recommendation engine.

 

 

Conclusion

Leveraging Recommendations capability at multiple touch points in the customer journey and combining it with advanced Search capabilities empowers ecommerce retailers to provide their users with a superior user experience on their platforms. Implementing Recommendations helps increase order rates, “add to cart” rates, average order value, and items per order. 

To learn how to implement product recommendations on your ecommerce website with minimal effort, view this short live coding video recording.

To learn how to leverage product recommendations on high-importance sales events, such as Black Friday, refer to: How Composable Commerce can boost customer spending during Black Friday and Cyber Week.

For B2B retail Recommend implementations, refer to B2B commerce digital transformation: merchandising and AI optimizations.

About the author
Tanya Herman

Product Manager

Recommended Articles

Powered byAlgolia Algolia Recommend

From search to recommendations – framing your customer’s online retail journey
product

Peter Villani

Sr. Tech & Business Writer

How any business can benefit from personalization and recommendations
product

Marie-Laure Thuret

Technical Product Manager

What is a product recommender (or product recommendation engine)?
product

Catherine Dee

Search and Discovery writer