Search by Algolia
Add InstantSearch and Autocomplete to your search experience in just 5 minutes
product

Add InstantSearch and Autocomplete to your search experience in just 5 minutes

A good starting point for building a comprehensive search experience is a straightforward app template. When crafting your application’s ...

Imogen Lovera

Senior Product Manager

Best practices of conversion-focused ecommerce website design
e-commerce

Best practices of conversion-focused ecommerce website design

The inviting ecommerce website template that balances bright colors with plenty of white space. The stylized fonts for the headers ...

Catherine Dee

Search and Discovery writer

Ecommerce product listing pages: what they are and how to optimize them for maximum conversion
e-commerce

Ecommerce product listing pages: what they are and how to optimize them for maximum conversion

Imagine an online shopping experience designed to reflect your unique consumer needs and preferences — a digital world shaped completely around ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

DevBit Recap: Winter 2023 — Community
engineering

DevBit Recap: Winter 2023 — Community

Winter is here for those in the northern hemisphere, with thoughts drifting toward cozy blankets and mulled wine. But before ...

Chuck Meyer

Sr. Developer Relations Engineer

How to create the highest-converting product detail pages (PDPs)
e-commerce

How to create the highest-converting product detail pages (PDPs)

What if there were a way to persuade shoppers who find your ecommerce site, ultimately making it to a product ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

Highlights from GopherCon Australia 2023
engineering

Highlights from GopherCon Australia 2023

This year a bunch of our engineers from our Sydney office attended GopherCon AU at University of Technology, Sydney, in ...

David Howden
James Kozianski

David Howden &

James Kozianski

Enhancing customer engagement: The role of conversational commerce
e-commerce

Enhancing customer engagement: The role of conversational commerce

Second only to personalization, conversational commerce has been a hot topic of conversation (pun intended) amongst retailers for the better ...

Michael Klein

Principal, Klein4Retail

Craft a unique discovery experience with AI-powered recommendations
product

Craft a unique discovery experience with AI-powered recommendations

Algolia’s Recommend complements site search and discovery. As customers browse or search your site, dynamic recommendations encourage customers to ...

Maria Lungu

Frontend Engineer

What are product detail pages and why are they critical for ecommerce success?
e-commerce

What are product detail pages and why are they critical for ecommerce success?

Winter is coming, along with a bunch of houseguests. You want to replace your battered old sofa — after all,  the ...

Catherine Dee

Search and Discovery writer

Why weights are often counterproductive in ranking
engineering

Why weights are often counterproductive in ranking

Search is a very complex problem Search is a complex problem that is hard to customize to a particular use ...

Julien Lemoine

Co-founder & former CTO at Algolia

How to increase your ecommerce conversion rate in 2024
e-commerce

How to increase your ecommerce conversion rate in 2024

2%. That’s the average conversion rate for an online store. Unless you’re performing at Amazon’s promoted products ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

How does a vector database work? A quick tutorial
ai

How does a vector database work? A quick tutorial

What’s a vector database? And how different is it than a regular-old traditional relational database? If you’re ...

Catherine Dee

Search and Discovery writer

Removing outliers for A/B search tests
engineering

Removing outliers for A/B search tests

How do you measure the success of a new feature? How do you test the impact? There are different ways ...

Christopher Hawke

Senior Software Engineer

Easily integrate Algolia into native apps with FlutterFlow
engineering

Easily integrate Algolia into native apps with FlutterFlow

Algolia's advanced search capabilities pair seamlessly with iOS or Android Apps when using FlutterFlow. App development and search design ...

Chuck Meyer

Sr. Developer Relations Engineer

Algolia's search propels 1,000s of retailers to Black Friday success
e-commerce

Algolia's search propels 1,000s of retailers to Black Friday success

In the midst of the Black Friday shopping frenzy, Algolia soared to new heights, setting new records and delivering an ...

Bernadette Nixon

Chief Executive Officer and Board Member at Algolia

Generative AI’s impact on the ecommerce industry
ai

Generative AI’s impact on the ecommerce industry

When was your last online shopping trip, and how did it go? For consumers, it’s becoming arguably tougher to ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

What’s the average ecommerce conversion rate and how does yours compare?
e-commerce

What’s the average ecommerce conversion rate and how does yours compare?

Have you put your blood, sweat, and tears into perfecting your online store, only to see your conversion rates stuck ...

Vincent Caruana

Senior Digital Marketing Manager, SEO

What are AI chatbots, how do they work, and how have they impacted ecommerce?
ai

What are AI chatbots, how do they work, and how have they impacted ecommerce?

“Hello, how can I help you today?”  This has to be the most tired, but nevertheless tried-and-true ...

Catherine Dee

Search and Discovery writer

Looking for something?

facebookfacebooklinkedinlinkedintwittertwittermailmail

Natural language understanding, also known as NLU, is a term that refers to how computers understand language spoken and written by people. Yes, that’s almost tautological, but it’s worth stating, because while the architecture of NLU is complex, and the results can be magical, the underlying goal of NLU is very clear. 

For example, there are an estimated 320 billion emails sent every day. That is a lot of natural language created and consumed, and if computers can better understand it, it can help the people who are interacting with those emails. NLU can determine whether an email is spam, if an email is high priority, or if there are other, related, emails to share with the recipient. All of these efforts help people get the most out of email.

The difference between NLU and NLP

Of course, there’s also the ever present question of what the difference is between natural language understanding and natural language processing, or NLP. The answer, again, is in the name. Natural language processing is about processing natural language, or taking text and transforming it into pieces that are easier for computers to use. Some common NLP tasks are removing stop words, segmenting words, or splitting compound words. NLP can also identify parts of speech, or important entities within text.

Getting back to the uses of natural language understanding, we can think of other examples, such as:

  • Summarizing news articles and blog posts
  • Detecting the language of a webpage to offer a translation
  • Identifying key topics in the transcript of a sales call
  • Categorizing the emotions expressed in a tweet
  • A bot to serve customer service requests
  • Serving up the right products for a search request
  • Smart voice assistants

These examples are a small percentage of all the uses for natural language understanding. Anything you can think of where you could benefit from understanding what natural language is communicating is likely a domain for NLU.

Why natural language understanding is important

Natural language understanding is complicated, and seems like magic, because natural language is complicated. Language packs a lot of information in a small amount of space. A clear example of this is the sentence “the trophy would not fit in the brown suitcase because it was too big.” You probably understood immediately what was too big, but this is really difficult for a computer. 

We can’t simply write a program that checks for the phrase “was too big” and understand that the phrase refers to the first item. First, because the phrase might instead be “was too large” or “was too heavy” or “is too big.” Second, because there are formulations where that “rule” falls flat, such as “the brown suitcase would not fit the trophy because it was too big.” There are even phrasings that might even be confusing to people, such as “I didn’t bring the trophy in the brown suitcase because it was too big.” Was the trophy too big for the suitcase, or was the suitcase too big to bring?

Natural language understanding is built atop machine learning

It’s for this reason that NLU relies heavily on machine learning. Machine learning, or ML, can take large amounts of text and learn patterns over time. This is explained by what’s called the distributional hypothesis, which says that you can learn a lot about a word “by the company it keeps.” Take the word “hat.” An ML model might see phrases like, “the man was wearing a hat on his head” or “I put on a hat to keep the sun out of my eyes.” If the model sees phrases like these enough, it starts to pick up on some patterns. Throw it, then, the phrase, “I put on a baseball cap to keep out the sun” and it can sense that just maybe there is a similarity between “hat” and “baseball cap.” Add in the phrase “the man wore a baseball cap on his head” and the similarity is seen to be even stronger.

As you can imagine, these ML models require a lot of data. OpenAI trained their GPT-2 model on 1.5 billion parameters, and followed that up with GPT-3 on 175 billion parameters. This data is often crawled from publicly available data on the web, but is then fine-tuned on a specific dataset. This fine tuning allows the model to better understand a given dataset. For example, fine tuning may help the model to better understand medical data.

Improvements in computing and machine learning have increased the power and capabilities of NLU over the past decade. We can expect over the next few years for NLU to become even more powerful and more integrated into software.

For more information on the applications of Natural Language Understanding, and to learn how you can leverage Algolia’s search and discovery APIs across your site or app, please contact our team of experts.  

About the author
Dustin Coates

Product and GTM Manager

linkedin

Recommended Articles

Powered byAlgolia Algolia Recommend

Advanced keyword search is built upon natural language processing (NLP)
ai

Julien Lemoine

Co-founder & former CTO at Algolia

What is natural language search?
product

Dustin Coates

Product and GTM Manager

What is natural-language understanding?
product

John Stewart

VP Corporate Marketing